Catalogue des ouvrages Université de Laghouat
A partir de cette page vous pouvez :
Détail de l'auteur
Auteur Ahmed Lamin Ben Kamri
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Faire une suggestion Affiner la recherche

Titre : | Machine learning investigations and ab-initio study of thermoelectric properties of Half-Heusler compounds | Type de document : | document multimédia | Auteurs : | Ahmed Lamin Ben Kamri, Auteur ; Ibn Khaldoun Lefkaier, Directeur de thèse | Editeur : | Laghouat : Université Amar Telidji - Département des sciences de la matière | Année de publication : | 2025 | Importance : | 136 p. | Accompagnement : | 1 disque optique numérique (CD-ROM) | Note générale : | Option : Materials physics and nanostructures | Langues : | Anglais | Catégories : | THESES :17 physique
| Mots-clés : | Machine learning Ensemble learning Thermoelectricity Seebeck coefficient Half-Heusler compounds | Résumé : | This dissertation explores the application of machine learning (Ensemble Learning)to predict the Seebeck coefficient in Half-Heusler compounds, focusing on both n-type and p-type compounds. Six machine learning models were developed and compared, utilizing only the chemical formulas of compounds. Through advanced techniques such as data preprocessing, feature selection, and hyperparameter optimization, the models demonstrated robust and accurate predictions. Performance metrics including R2, MAE, and RMSE confirmed the strong predictive power and generalizability of the models.
Notably, LightGBM was most effective for n-type materials, while GBoost excelled for p-type compounds. The findings emphasize the importance of charge carrier concentration in predicting thermoelectric performance and highlight the models’ potential in screening materials for thermoelectric applications. Predictions made for approximately 60 half-Heusler compounds further validated the models, showing strong alignment with first-principles calculations and other studies. These results underscore the potential of machine learning to accelerate the discovery of high-performance thermoelectric materials. | note de thèses : | Thèse de doctorat en physique |
Machine learning investigations and ab-initio study of thermoelectric properties of Half-Heusler compounds [document multimédia] / Ahmed Lamin Ben Kamri, Auteur ; Ibn Khaldoun Lefkaier, Directeur de thèse . - Laghouat : Université Amar Telidji - Département des sciences de la matière, 2025 . - 136 p. + 1 disque optique numérique (CD-ROM). Option : Materials physics and nanostructures Langues : Anglais Catégories : | THESES :17 physique
| Mots-clés : | Machine learning Ensemble learning Thermoelectricity Seebeck coefficient Half-Heusler compounds | Résumé : | This dissertation explores the application of machine learning (Ensemble Learning)to predict the Seebeck coefficient in Half-Heusler compounds, focusing on both n-type and p-type compounds. Six machine learning models were developed and compared, utilizing only the chemical formulas of compounds. Through advanced techniques such as data preprocessing, feature selection, and hyperparameter optimization, the models demonstrated robust and accurate predictions. Performance metrics including R2, MAE, and RMSE confirmed the strong predictive power and generalizability of the models.
Notably, LightGBM was most effective for n-type materials, while GBoost excelled for p-type compounds. The findings emphasize the importance of charge carrier concentration in predicting thermoelectric performance and highlight the models’ potential in screening materials for thermoelectric applications. Predictions made for approximately 60 half-Heusler compounds further validated the models, showing strong alignment with first-principles calculations and other studies. These results underscore the potential of machine learning to accelerate the discovery of high-performance thermoelectric materials. | note de thèses : | Thèse de doctorat en physique |
|

Titre : | SU(2) ×U(1) Formulation of GINZBURG-LANDAU équations | Type de document : | texte manuscrit | Auteurs : | Ahmed Lamin Ben Kamri, Auteur ; Salah Khenchoul, Directeur de thèse | Editeur : | Laghouat : Université Amar Telidji - Département des sciences de la matière | Année de publication : | 2020 | Importance : | 34p. | Format : | 30cm. | Accompagnement : | 1 disque optique numérique (CD-ROM) | Note générale : | Option : Materials physics | Langues : | Anglais | Mots-clés : | Ginzburg-Landau equations Breaking symmetry Spin superconductivity Abelian and non-abelian electromagnetic potential | Résumé : | Abstract Spin superconductivity is analogue of conventional charge superconductivity. Here, we derive a framework for describing the SU(2)-U(I) breaking symmetry in Ginzburg-Landau equations. We have found that it is not possible to directly insert or change an abelian electromagnetic potential with a non-abelian other one. The existence of the temporal components in the expression of breaking symmetry potential constant, indicates that the critical temperature can be controlled by applying an electric potential. | note de thèses : | Mémoire de Master en physique |
|
Réservation
Réserver ce document
Exemplaires
Disponibilité |
---|
MP 01-77 | MP 01-77 | Thése | BIBLIOTHEQUE DE FACULTE DES SCIENCES | théses (sci) | Disponible |