Catalogue des ouvrages Université de Laghouat
A partir de cette page vous pouvez :
Détail de l'auteur
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Faire une suggestion Affiner la recherche

Titre : | Weapon detection from camera footages using YOLO and SSD models | Type de document : | texte manuscrit | Auteurs : | Meriem Zaoui, Auteur ; Asma Guerroudj, Auteur ; Leila Benarous, Directeur de thèse | Editeur : | Laghouat : Université Amar Telidji - Département d'informatique | Année de publication : | 2022 | Importance : | 43 p. | Format : | 30 cm. | Accompagnement : | 1 disque optique numérique (CD-ROM) | Note générale : | Option : Networks, systems, and distributed applications (Réseaux,systèmes et applications réparties) | Langues : | Anglais | Mots-clés : | Weapon detection Convolutional Neural Networks (CNN) YOLOV3 YOLOV4 SSD mobile net CCTV | Résumé : | detection using a convolutional neural network (CNN) based SSD mobile network YOLOV3 and the YOLOV4 algorithm. The purpose behind using three models was to compare between their accuracy and investigate their potential use and suitability in real-time environment. The results for the three models were good. However, in term of accuracy, YOLOV4 showed more promising results followed by the SSD model then theYOLOV3. Even though, the accuracy is not the only criterion to consider in real-world applications requiring short latency and high speed. Therefore, taking this tradeoff between accuracy and speed the YOLOV4 model seems to be the most suitable. | note de thèses : | Mémoire de master en informatique |
Weapon detection from camera footages using YOLO and SSD models [texte manuscrit] / Meriem Zaoui, Auteur ; Asma Guerroudj, Auteur ; Leila Benarous, Directeur de thèse . - Laghouat : Université Amar Telidji - Département d'informatique, 2022 . - 43 p. ; 30 cm. + 1 disque optique numérique (CD-ROM). Option : Networks, systems, and distributed applications (Réseaux,systèmes et applications réparties) Langues : Anglais Mots-clés : | Weapon detection Convolutional Neural Networks (CNN) YOLOV3 YOLOV4 SSD mobile net CCTV | Résumé : | detection using a convolutional neural network (CNN) based SSD mobile network YOLOV3 and the YOLOV4 algorithm. The purpose behind using three models was to compare between their accuracy and investigate their potential use and suitability in real-time environment. The results for the three models were good. However, in term of accuracy, YOLOV4 showed more promising results followed by the SSD model then theYOLOV3. Even though, the accuracy is not the only criterion to consider in real-world applications requiring short latency and high speed. Therefore, taking this tradeoff between accuracy and speed the YOLOV4 model seems to be the most suitable. | note de thèses : | Mémoire de master en informatique |
|
Réservation
Réserver ce document
Exemplaires
Disponibilité |
---|
MF 01-56 | MF 01-56 | Thése | BIBLIOTHEQUE DE FACULTE DES SCIENCES | théses (sci) | Disponible |