Catalogue des ouvrages Université de Laghouat
A partir de cette page vous pouvez :
Détail de l'auteur
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Faire une suggestion Affiner la recherche

Titre : | Application of deep learning approach for COVID-19 cases forecasting | Type de document : | texte manuscrit | Auteurs : | Meriem Atig, Auteur ; Mustapha Bouakkaz, Directeur de thèse | Editeur : | Laghouat : Université Amar Telidji - Département d'informatique | Année de publication : | 2022 | Importance : | 51 p. | Format : | 30 cm. | Accompagnement : | 1 disque optique numérique | Note générale : | Option : Information and decision system (Systèmes d'information et de décision) | Langues : | Anglais | Mots-clés : | Covid 19 Prediction Deep Learning Neural Network (NN) Recurrent Neural Network (RNN) Long - Short Term Memory ( LSTM ) Machine Learning Artificial Intelligence | Résumé : | Abstract COVID - 19 , also Brown as the coronavirus , has paralyzed the whole world , infected more than 520 million people worldwide , and caused the death of more than 6 million people . Over the past few decades , the field of artificial intelligence and deep learning has shown tremendous development and multiple uses in many fields such as security , self - driving cars , robotics , and especially healthcare ... The enormous impact of this pandemic has prompted us to try to find and explore ways to use this technology to help limit its spread We proposed a method using long - short term memory ( LSTM ) a type of recurrent neural network ( RNN ) to predict the number of cases in the near future by using the information we have from previous cases since the beginning of the epidemic . | note de thèses : | Mémoire de master en informatique |
Application of deep learning approach for COVID-19 cases forecasting [texte manuscrit] / Meriem Atig, Auteur ; Mustapha Bouakkaz, Directeur de thèse . - Laghouat : Université Amar Telidji - Département d'informatique, 2022 . - 51 p. ; 30 cm. + 1 disque optique numérique. Option : Information and decision system (Systèmes d'information et de décision) Langues : Anglais Mots-clés : | Covid 19 Prediction Deep Learning Neural Network (NN) Recurrent Neural Network (RNN) Long - Short Term Memory ( LSTM ) Machine Learning Artificial Intelligence | Résumé : | Abstract COVID - 19 , also Brown as the coronavirus , has paralyzed the whole world , infected more than 520 million people worldwide , and caused the death of more than 6 million people . Over the past few decades , the field of artificial intelligence and deep learning has shown tremendous development and multiple uses in many fields such as security , self - driving cars , robotics , and especially healthcare ... The enormous impact of this pandemic has prompted us to try to find and explore ways to use this technology to help limit its spread We proposed a method using long - short term memory ( LSTM ) a type of recurrent neural network ( RNN ) to predict the number of cases in the near future by using the information we have from previous cases since the beginning of the epidemic . | note de thèses : | Mémoire de master en informatique |
|
Réservation
Réserver ce document
Exemplaires
Disponibilité |
---|
MF 02-46 | MF 02-46 | Thése | BIBLIOTHEQUE DE FACULTE DES SCIENCES | théses (sci) | Disponible |