Catalogue des ouvrages Université de Laghouat
A partir de cette page vous pouvez :

Titre : | Face recognition using Deep Learning | Type de document : | texte manuscrit | Auteurs : | Ibrahim Chorana, Auteur ; Younes Guellouma, Directeur de thèse | Editeur : | Laghouat : Université Amar Telidji - Département d'informatique | Année de publication : | 2018 | Importance : | 60 p. | Format : | 30 cm. | Accompagnement : | 1 disque optique numérique (CD-ROM) | Note générale : | Option : (Decision-making information systems) Systèmes d'information et de décision | Langues : | Anglais | Mots-clés : | Machine Learning Deep Learning CNNS Face Recognition Facial hair Recognition | Résumé : | Nowdays, Machine learning techniques reached a higher level of success. Especially, Deep Learning (DL). The purpose of this work, is to investigate the application of DL techniques in the problem of Face Recognition. In fact, Face Recognition is a currently developing technology with multiple real-life applications. In particular, Facial Hair Recognition/detection plays an important role in improving Face Recognition The goal of this work is to develop a Facial Hair system. Recognition (FHR) system using DL. The developed system uses Convolutional Neural Networks (CNNS), which is capable of learning and improving its performance without the need of human intervention. The system can be trained to distinguish between faces that have a beard and/or moustache and the shaved faces by learning from faces dataset. We compared our system's results with a non deep learning based system, where our system achieved promising results with accuracy surpassed 77% for a set of 800 images. | note de thèses : | Mémoire de master en informatique |
Face recognition using Deep Learning [texte manuscrit] / Ibrahim Chorana, Auteur ; Younes Guellouma, Directeur de thèse . - Laghouat : Université Amar Telidji - Département d'informatique, 2018 . - 60 p. ; 30 cm. + 1 disque optique numérique (CD-ROM). Option : (Decision-making information systems) Systèmes d'information et de décision Langues : Anglais Mots-clés : | Machine Learning Deep Learning CNNS Face Recognition Facial hair Recognition | Résumé : | Nowdays, Machine learning techniques reached a higher level of success. Especially, Deep Learning (DL). The purpose of this work, is to investigate the application of DL techniques in the problem of Face Recognition. In fact, Face Recognition is a currently developing technology with multiple real-life applications. In particular, Facial Hair Recognition/detection plays an important role in improving Face Recognition The goal of this work is to develop a Facial Hair system. Recognition (FHR) system using DL. The developed system uses Convolutional Neural Networks (CNNS), which is capable of learning and improving its performance without the need of human intervention. The system can be trained to distinguish between faces that have a beard and/or moustache and the shaved faces by learning from faces dataset. We compared our system's results with a non deep learning based system, where our system achieved promising results with accuracy surpassed 77% for a set of 800 images. | note de thèses : | Mémoire de master en informatique |
|
Réservation
Réserver ce document
Exemplaires
Disponibilité |
---|
MF 02-25 | MF 02-25 | Thése | BIBLIOTHEQUE DE FACULTE DES SCIENCES | théses (sci) | Disponible |