Catalogue des ouvrages Université de Laghouat
						
	
A partir de cette page vous pouvez :
 
		Détail de l'auteur
	
		
				
							
		Auteur		Mohamed Elbachir Khelifi 
							
	
							
																							
						
					
					
										
						
					
												
	 
	
		 
					
				Documents disponibles écrits par cet auteur
 
 
						
						
Ajouter le résultat dans votre panier   Faire une suggestion  Affiner la recherche
				
				
	    		
				
	    		
				 
				
		
			
			| Titre : | Automatic Arabic Speech Recognition by CNN |  | Type de document :  | document multimédia |  | Auteurs :  | Ali Elhocine Sefari, Auteur ; Mohamed Elbachir Khelifi, Auteur ; Safouane Chellali, Directeur de thèse |  | Editeur : | Laghouat : Université Amar Telidji - Département d'électronique |  | Année de publication :  | 2023 |  | Importance :  | 75p. |  | Note générale :  | Option : Réseaux et Télécommunications |  | Langues : | Français |  | Résumé :  | Automatic speech recognition has been an active field of study since the 1950s, 
which explains its richness but also its difficulty. It involves the collaboration of multiple 
disciplines and techniques. The complexity of the speech signal, resulting from the 
interaction between sound production and perception by the ear, contributes to the 
challenge of automatic speech recognition, which has become a highly interesting 
research topic. 
The objective of this thesis is the acquisition and implementation of a database 
consisting of 20 phrases divided in to two categories connected words and separated 
words, along with a corpus of syntactically and semantically correct sentences. This 
database was recorded under real conditions, and the acoustic analysis of this database 
was performed using the MFCC method, providing us with a series of input vectors for 
the implemented Automatic Speech Recognition (ASR) system. This system is based on 
Convolutional Neural Networks. Evaluating the performance of the ASR system using 
the database analysis method will highlight the influence of parameterization. |  | note de thèses :  | Mémoire de master en électronique |   
 
	  		Automatic Arabic Speech Recognition by CNN [document multimédia] /  Ali Elhocine Sefari, Auteur ;  Mohamed Elbachir Khelifi, Auteur ;  Safouane Chellali, Directeur de thèse . -  Laghouat : Université Amar Telidji - Département d'électronique, 2023 . - 75p. Option : Réseaux et Télécommunications Langues : Français | Résumé :  | Automatic speech recognition has been an active field of study since the 1950s, 
which explains its richness but also its difficulty. It involves the collaboration of multiple 
disciplines and techniques. The complexity of the speech signal, resulting from the 
interaction between sound production and perception by the ear, contributes to the 
challenge of automatic speech recognition, which has become a highly interesting 
research topic. 
The objective of this thesis is the acquisition and implementation of a database 
consisting of 20 phrases divided in to two categories connected words and separated 
words, along with a corpus of syntactically and semantically correct sentences. This 
database was recorded under real conditions, and the acoustic analysis of this database 
was performed using the MFCC method, providing us with a series of input vectors for 
the implemented Automatic Speech Recognition (ASR) system. This system is based on 
Convolutional Neural Networks. Evaluating the performance of the ASR system using 
the database analysis method will highlight the influence of parameterization. |  | note de thèses :  | Mémoire de master en électronique |  
  | 
					Réservation
Réserver ce document
Exemplaires
| Disponibilité | 
|---|
| Thc 09-22 | Thc 09-22 | CD | BIBLIOTHEQUE DE FACULTE DE TECHNOLOGIE | théses (tec) | Disponible  |