Catalogue des ouvrages Université de Laghouat
A partir de cette page vous pouvez :
Détail de l'auteur
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Faire une suggestion Affiner la recherche

Titre : | UAV adaptive control based on AI to transfer the energy wirelessly. | Type de document : | texte manuscrit | Auteurs : | Djelmani Nadir, Auteur ; Omar Sami Oubbati, Directeur de thèse | Editeur : | Laghouat : Université Amar Telidji - Département d'électronique | Année de publication : | 2021 | Importance : | 50p. | Format : | 30cm. | Note générale : | SPECIALTY: Electronics of embedded systems | Langues : | Anglais | Résumé : | This thesis aims to configure a set-up for UAV self-controlling without human intervention and no prior information about the environment to recharge IoT devices wirelessly, so they continue to operate for as long as possible. IoT devices have become more popular and widespread, and their involvement is crucial in many fields. Also, they can provide a multitude of services to enhance human lives. As challenges, UAV is supposed to explore the environment to get more information about it continuously, and therefore we should carefully minimize its energy consumption to avoid its possible failure. As a solution, an AI-based algorithm called Q-learning is adopted to optimize the movement of the UAV and enhance the energy transfer toward the IoT devices. | note de thèses : | mémoire de master électronique |
UAV adaptive control based on AI to transfer the energy wirelessly. [texte manuscrit] / Djelmani Nadir, Auteur ; Omar Sami Oubbati, Directeur de thèse . - Laghouat : Université Amar Telidji - Département d'électronique, 2021 . - 50p. ; 30cm. SPECIALTY: Electronics of embedded systems Langues : Anglais Résumé : | This thesis aims to configure a set-up for UAV self-controlling without human intervention and no prior information about the environment to recharge IoT devices wirelessly, so they continue to operate for as long as possible. IoT devices have become more popular and widespread, and their involvement is crucial in many fields. Also, they can provide a multitude of services to enhance human lives. As challenges, UAV is supposed to explore the environment to get more information about it continuously, and therefore we should carefully minimize its energy consumption to avoid its possible failure. As a solution, an AI-based algorithm called Q-learning is adopted to optimize the movement of the UAV and enhance the energy transfer toward the IoT devices. | note de thèses : | mémoire de master électronique |
|
Réservation
Réserver ce document
Exemplaires
Disponibilité |
---|
Thc 09-59 | Thc 09-59 | Thése | BIBLIOTHEQUE DE FACULTE DE TECHNOLOGIE | Genie electrique (TEC) | Disponible |