Catalogue des ouvrages Université de Laghouat
						
	
A partir de cette page vous pouvez :
 
		Détail de l'auteur
	
		
				
							
		Auteur		Zakaria Miloudia Moncef 
							
	
							
																							
						
					
					
										
						
					
												
	 
	
		 
					
				Documents disponibles écrits par cet auteur
 
 
						
						
Ajouter le résultat dans votre panier   Faire une suggestion  Affiner la recherche
				
				
	    		
				
	    		
				 
				
		
			
			| Titre : | Q-learning based path planning and predictive control for the navigation of a mobile robot |  | Type de document :  | document multimédia |  | Auteurs :  | Oussama Guettaf, Auteur ; Zakaria Miloudia Moncef, Auteur ; Fatima Chouireb, Directeur de thèse |  | Editeur : | Laghouat : Université Amar Telidji - Département d'électronique |  | Année de publication :  | 2024 |  | Importance :  | 60 p. |  | Note générale :  | Option : Automatic and industrial informatic |  | Langues : | Anglais |  | Résumé :  | Our work aims to find the optimal path to enable a mobile robot to navigate from a starting point to a destination in a known environment, while avoiding obstacles. To achieve this goal, we started by studying and implementing the Model Predictive Control (MPC) framework in the first phase. Then, in a second phase, we explored various state-of-the-art planning algorithms, including Reinforcement Learning approaches. Among the latter, we studied and implemented the Q-Learning algorithm to perform the path planning according to the simulated scenarios. Ours simulations were conducted both using the Matlab environment and the MATLAB-ROS interface along with the Gazebo simulator. The results we obtained were highly reliable. |  | note de thèses :  | Mémoire de master en électronique |   
 
	  		Q-learning based path planning and predictive control for the navigation of a mobile robot [document multimédia] /  Oussama Guettaf, Auteur ;  Zakaria Miloudia Moncef, Auteur ;  Fatima Chouireb, Directeur de thèse . -  Laghouat : Université Amar Telidji - Département d'électronique, 2024 . - 60 p. Option : Automatic and industrial informatic Langues : Anglais | Résumé :  | Our work aims to find the optimal path to enable a mobile robot to navigate from a starting point to a destination in a known environment, while avoiding obstacles. To achieve this goal, we started by studying and implementing the Model Predictive Control (MPC) framework in the first phase. Then, in a second phase, we explored various state-of-the-art planning algorithms, including Reinforcement Learning approaches. Among the latter, we studied and implemented the Q-Learning algorithm to perform the path planning according to the simulated scenarios. Ours simulations were conducted both using the Matlab environment and the MATLAB-ROS interface along with the Gazebo simulator. The results we obtained were highly reliable. |  | note de thèses :  | Mémoire de master en électronique |  
  | 
					Réservation
Réserver ce document
Exemplaires
| Disponibilité | 
|---|
| the 09-199 | the 09-199 | CD | BIBLIOTHEQUE DE FACULTE DE TECHNOLOGIE | théses (tec) | Disponible  |