Catalogue des ouvrages Université de Laghouat
A partir de cette page vous pouvez :
Détail de l'auteur
Auteur Fatima Zahra Boussebci
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Faire une suggestion Affiner la recherche

Titre : | A machine learning-based system to translate algerian sign language to speech | Type de document : | document multimédia | Auteurs : | Fatima Zahra Boussebci, Auteur ; Yasmine Meriem Ghebache, Auteur ; Benameur Ziani, Directeur de thèse | Editeur : | Laghouat : Université Amar Telidji - Département d'informatique | Année de publication : | 2025 | Importance : | 52 p. | Accompagnement : | 1 disque optique numérique (CD-ROM) | Note générale : | Option : Information systems and decision-making - Networks,distributed systems and applications | Langues : | Anglais | Mots-clés : | ALGSL Hand gestures Machine Learning Deep Learning Speech translation AI Deaf and Hearing-Impaired Transfer Learning Raspberry Pi Reel-time voice output | Résumé : | This thesis presents the development of a real-time Algerian Darija sign language translation tool, which was thought to facilitate the communication of hard-of-hearing and deaf communities.The said tool recognizes Arabic letter hand movements and converts them into verbal Darija through pre-recorded sound files. Implemented in Python, the system combines MediaPipe’s hand- tracking library with a convolutional neural network (CNN) that has been trained on a bespoke gesture dataset. Designed to run offline on a Raspberry Pi Zero 2W , it uses pre-recorded Darija audio files to vocalize recognized gestures. Testing showed high accuracy under the specified environment and the assigned hardware Its ease of use and modularity allow for future expansion, with possibilities for mobile integration . This study adds to the body of assistive technology by offering a low-cost and contextually relevant solution that facilitates communication between sign language users and nonsigners in daily communication. | note de thèses : | Mémoire de master en informatique |
A machine learning-based system to translate algerian sign language to speech [document multimédia] / Fatima Zahra Boussebci, Auteur ; Yasmine Meriem Ghebache, Auteur ; Benameur Ziani, Directeur de thèse . - Laghouat : Université Amar Telidji - Département d'informatique, 2025 . - 52 p. + 1 disque optique numérique (CD-ROM). Option : Information systems and decision-making - Networks,distributed systems and applications Langues : Anglais Mots-clés : | ALGSL Hand gestures Machine Learning Deep Learning Speech translation AI Deaf and Hearing-Impaired Transfer Learning Raspberry Pi Reel-time voice output | Résumé : | This thesis presents the development of a real-time Algerian Darija sign language translation tool, which was thought to facilitate the communication of hard-of-hearing and deaf communities.The said tool recognizes Arabic letter hand movements and converts them into verbal Darija through pre-recorded sound files. Implemented in Python, the system combines MediaPipe’s hand- tracking library with a convolutional neural network (CNN) that has been trained on a bespoke gesture dataset. Designed to run offline on a Raspberry Pi Zero 2W , it uses pre-recorded Darija audio files to vocalize recognized gestures. Testing showed high accuracy under the specified environment and the assigned hardware Its ease of use and modularity allow for future expansion, with possibilities for mobile integration . This study adds to the body of assistive technology by offering a low-cost and contextually relevant solution that facilitates communication between sign language users and nonsigners in daily communication. | note de thèses : | Mémoire de master en informatique |
|