Catalogue des ouvrages Université de Laghouat
Détail de l'auteur
Auteur Ahmed Houssam Eddine Taleb
|
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Faire une suggestion Affiner la recherche

| Titre : |
Deep learning-based ai integration in dual mobile applications for Skin disease detection and doctor-patient appointment management |
| Type de document : |
document multimédia |
| Auteurs : |
Ahmed Houssam Eddine Taleb, Auteur ; Mustapha Bouakkaz, Directeur de thèse |
| Editeur : |
Laghouat : Université Amar Telidji - Département d'informatique |
| Année de publication : |
2025 |
| Importance : |
44 p. |
| Accompagnement : |
1 disque optique numérique (CD-ROM) |
| Note générale : |
Option: Data science et artificial intelligence |
| Langues : |
Anglais (eng) |
| Résumé : |
Skin diseases range from minor conditions to serious cancers like melanoma, where early detection is crucial for effective treatment and survival. This thesis presents a comprehensive AI-driven system for skin disease classification using the HAM10000 dataset, which includes over 10,000 dermatoscopic images across seven lesion categories. At its core is a specially designed Convolutional Neural Network (CNN) enhanced with residual blocks and attention mechanisms, trained on a Colab Pro A100 GPU. The model outperformed popular pretrained networks—ResNet50, DenseNet121, and EfficientNetB0—achieving a validation accuracy of 85.08, while the best pretrained model reached only 59.63. For practical deployment, the model was converted to TensorFlow Lite and embedded into two cross-platform Flutter Firebase mobile apps: a Patient App for AI-based skin image analysis and appointment booking, and a Doctor App for appointment management and AI-assisted diagnosis. This work delivers an efficient, scalable solution for early skin disease detection and smart healthcare support |
| note de thèses : |
Mémoire de master en informatiques |
Deep learning-based ai integration in dual mobile applications for Skin disease detection and doctor-patient appointment management [document multimédia] / Ahmed Houssam Eddine Taleb, Auteur ; Mustapha Bouakkaz, Directeur de thèse . - Laghouat : Université Amar Telidji - Département d'informatique, 2025 . - 44 p. + 1 disque optique numérique (CD-ROM). Option: Data science et artificial intelligence Langues : Anglais ( eng)
| Résumé : |
Skin diseases range from minor conditions to serious cancers like melanoma, where early detection is crucial for effective treatment and survival. This thesis presents a comprehensive AI-driven system for skin disease classification using the HAM10000 dataset, which includes over 10,000 dermatoscopic images across seven lesion categories. At its core is a specially designed Convolutional Neural Network (CNN) enhanced with residual blocks and attention mechanisms, trained on a Colab Pro A100 GPU. The model outperformed popular pretrained networks—ResNet50, DenseNet121, and EfficientNetB0—achieving a validation accuracy of 85.08, while the best pretrained model reached only 59.63. For practical deployment, the model was converted to TensorFlow Lite and embedded into two cross-platform Flutter Firebase mobile apps: a Patient App for AI-based skin image analysis and appointment booking, and a Doctor App for appointment management and AI-assisted diagnosis. This work delivers an efficient, scalable solution for early skin disease detection and smart healthcare support |
| note de thèses : |
Mémoire de master en informatiques |
|  |
Réservation
Réserver ce document
Exemplaires (1)
|
| MF 03-10 | MF 03-10 | CD | BIBLIOTHEQUE DE FACULTE DES SCIENCES | théses (sci) | Disponible |