Catalogue des ouvrages Université de Laghouat
A partir de cette page vous pouvez :
Détail de l'auteur
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Faire une suggestion Affiner la recherche

Titre : | A real-time, collaborative host-based intrusion detection system leveraging bigbird embeddings and Deep q-learning | Type de document : | document multimédia | Auteurs : | Zakaria Remmache, Auteur ; Tahar Hachani, Auteur ; Taher Allaoui, Directeur de thèse | Editeur : | Laghouat : Université Amar Telidji - Département d'informatique | Année de publication : | 2025 | Importance : | 66 p. | Accompagnement : | 1 disque optique numérique (CD-ROM) | Note générale : | Option : Data science and artificial intelligence | Langues : | Anglais | Mots-clés : | Cybersecurity Real time System Logs Linux Artificial intelligence | Résumé : | This dissertation presents a smart system for detecting cyber-attacks on computers by analyzing system activity in real time. The system focuses on information collected from Linux operating systems and uses recent advances in artificial intelligence to identify suspicious behavior. It processes system logs, transforms them into a form that a machine can understand, and uses a learning agent to decide whether the activity is normal or potentially harmful. The system improves over time by learning from its own experience. It is designed to respond quickly to threats while minimizing false alarms, and it can be deployed across different machines to share knowledge. Overall, this work aims to provide a modern and adaptive solution for enhancing computer security. | note de thèses : | Mémoire de master en informatique |
A real-time, collaborative host-based intrusion detection system leveraging bigbird embeddings and Deep q-learning [document multimédia] / Zakaria Remmache, Auteur ; Tahar Hachani, Auteur ; Taher Allaoui, Directeur de thèse . - Laghouat : Université Amar Telidji - Département d'informatique, 2025 . - 66 p. + 1 disque optique numérique (CD-ROM). Option : Data science and artificial intelligence Langues : Anglais Mots-clés : | Cybersecurity Real time System Logs Linux Artificial intelligence | Résumé : | This dissertation presents a smart system for detecting cyber-attacks on computers by analyzing system activity in real time. The system focuses on information collected from Linux operating systems and uses recent advances in artificial intelligence to identify suspicious behavior. It processes system logs, transforms them into a form that a machine can understand, and uses a learning agent to decide whether the activity is normal or potentially harmful. The system improves over time by learning from its own experience. It is designed to respond quickly to threats while minimizing false alarms, and it can be deployed across different machines to share knowledge. Overall, this work aims to provide a modern and adaptive solution for enhancing computer security. | note de thèses : | Mémoire de master en informatique |
|