Catalogue des ouvrages Université de Laghouat
A partir de cette page vous pouvez :

Titre : | SIMULATION AND CONCEPTION OF MIMO BIOSENSOR FOR DAMAGE LUNGS RUNG CLASSIFICATION. | Type de document : | document multimédia | Auteurs : | Rania Derar, Auteur ; Fatima Djerfaf, Directeur de thèse | Editeur : | Laghouat : Université Amar Telidji - Département de génie électrique | Année de publication : | 2024 | Importance : | 85p. | Accompagnement : | 1 CD ROM Optique Némérique | Note générale : | Instrumentation | Langues : | Anglais | Mots-clés : | Biosensors MIMO device Metamaterials Neural networks COVID-19 Lungs. | Résumé : | In the aftermath of the COVID-19 pandemic, many individuals have suffered from severe health repercussions, including both short and long-term lung damage. While X-rays have traditionally been employed for detecting lung issues, the need for faster and more efficient diagnostic methods is evident. In response to this need, this study introduces a novel split ring resonator (SRR) as Multiple-Input Multiple-Output (MIMO) biosensor. It is designed for the millimeter range, to swiftly and safely detect pneumonia associated to the COVID-19. Operating within the 5G frequency bands (36 GHz to 38 GHz) and leveraging metamaterial technology, this biosensor offers a compact solution for identifying lung abnormalities. By analyzing the water percentage in the lungs, the MIMO biosensor distinguishes the lung damage’s levels. Through extensive neural network classification and MIMO biosensor’s S parameters, a robust model for accurately classifying lung damage is developed. The proposed MIMO biosensor device demonstrates precise detection of affected lung level. | note de thèses : | Memoire de Master en Electronique |
SIMULATION AND CONCEPTION OF MIMO BIOSENSOR FOR DAMAGE LUNGS RUNG CLASSIFICATION. [document multimédia] / Rania Derar, Auteur ; Fatima Djerfaf, Directeur de thèse . - Laghouat : Université Amar Telidji - Département de génie électrique, 2024 . - 85p. + 1 CD ROM Optique Némérique. Instrumentation Langues : Anglais Mots-clés : | Biosensors MIMO device Metamaterials Neural networks COVID-19 Lungs. | Résumé : | In the aftermath of the COVID-19 pandemic, many individuals have suffered from severe health repercussions, including both short and long-term lung damage. While X-rays have traditionally been employed for detecting lung issues, the need for faster and more efficient diagnostic methods is evident. In response to this need, this study introduces a novel split ring resonator (SRR) as Multiple-Input Multiple-Output (MIMO) biosensor. It is designed for the millimeter range, to swiftly and safely detect pneumonia associated to the COVID-19. Operating within the 5G frequency bands (36 GHz to 38 GHz) and leveraging metamaterial technology, this biosensor offers a compact solution for identifying lung abnormalities. By analyzing the water percentage in the lungs, the MIMO biosensor distinguishes the lung damage’s levels. Through extensive neural network classification and MIMO biosensor’s S parameters, a robust model for accurately classifying lung damage is developed. The proposed MIMO biosensor device demonstrates precise detection of affected lung level. | note de thèses : | Memoire de Master en Electronique |
|
Réservation
Réserver ce document
Exemplaires
Disponibilité |
---|
the 09-198 | the 09-198 | CD | BIBLIOTHEQUE DE FACULTE DE TECHNOLOGIE | théses (tec) | Disponible |