Catalogue des ouvrages Université de Laghouat
A partir de cette page vous pouvez :

Titre : | Q-learning based path planning and predictive control for the navigation of a mobile robot | Type de document : | document multimédia | Auteurs : | Oussama Guettaf, Auteur ; Zakaria Miloudia Moncef, Auteur ; Fatima Chouireb, Directeur de thèse | Editeur : | Laghouat : Université Amar Telidji - Département d'électronique | Année de publication : | 2024 | Importance : | 60 p. | Note générale : | Option : Automatic and industrial informatic | Langues : | Anglais | Résumé : | Our work aims to find the optimal path to enable a mobile robot to navigate from a starting point to a destination in a known environment, while avoiding obstacles. To achieve this goal, we started by studying and implementing the Model Predictive Control (MPC) framework in the first phase. Then, in a second phase, we explored various state-of-the-art planning algorithms, including Reinforcement Learning approaches. Among the latter, we studied and implemented the Q-Learning algorithm to perform the path planning according to the simulated scenarios. Ours simulations were conducted both using the Matlab environment and the MATLAB-ROS interface along with the Gazebo simulator. The results we obtained were highly reliable. | note de thèses : | Mémoire de master en électronique |
Q-learning based path planning and predictive control for the navigation of a mobile robot [document multimédia] / Oussama Guettaf, Auteur ; Zakaria Miloudia Moncef, Auteur ; Fatima Chouireb, Directeur de thèse . - Laghouat : Université Amar Telidji - Département d'électronique, 2024 . - 60 p. Option : Automatic and industrial informatic Langues : Anglais Résumé : | Our work aims to find the optimal path to enable a mobile robot to navigate from a starting point to a destination in a known environment, while avoiding obstacles. To achieve this goal, we started by studying and implementing the Model Predictive Control (MPC) framework in the first phase. Then, in a second phase, we explored various state-of-the-art planning algorithms, including Reinforcement Learning approaches. Among the latter, we studied and implemented the Q-Learning algorithm to perform the path planning according to the simulated scenarios. Ours simulations were conducted both using the Matlab environment and the MATLAB-ROS interface along with the Gazebo simulator. The results we obtained were highly reliable. | note de thèses : | Mémoire de master en électronique |
|
Réservation
Réserver ce document
Exemplaires
Disponibilité |
---|
the 09-199 | the 09-199 | CD | BIBLIOTHEQUE DE FACULTE DE TECHNOLOGIE | théses (tec) | Disponible |