Catalogue des ouvrages Université de Laghouat
A partir de cette page vous pouvez :

Titre : | A lightweight multi-task deep learning framework for uav detection and tracking | Type de document : | document multimédia | Auteurs : | Amina Safaa Ben Messaoud, Auteur ; Nardjes Hamini, Directeur de thèse | Editeur : | Laghouat : Université Amar Telidji - Département d'informatique | Année de publication : | 2025 | Autre Editeur : | Laghouat : Université Amar Telidji - Département d'informatique | Importance : | 49 p. | Accompagnement : | 1 disque optique numérique (CD-ROM) | Note générale : | Option : Data science et artificial intelligence | Langues : | Anglais | Mots-clés : | UAVs MTL YOLO Faster-RCNN-Resnet50 Tracking | Résumé : | In this work, we propose a custom Multi-Task Learning (MTL) model for real-time UAV detection and tracking, designed to jointly perform classification and bounding box regression.
The proposed model was evaluated against state-of-the-art detectors, including YOLOv8 and Faster R-CNN ResNet-50.
While YOLOv8 achieved fast inference with strong accuracy, and Faster R-CNN demonstrated high precision in complex scenes, our MTL model outperformed both in classification accuracy and bounding box precision. Specifically, the MTL model achieved a classification accuracy of 98.53%, a bounding box MAE of 0.0256, and an MSE of 0.0027, demonstrating its effectiveness in multi-output learning.
To enable tracking, we integrated a Kalman Filter, which maintained consistent ob- ject identities across frames .
These results highlight the robustness and efficiency of the proposed MTL-based pipeline for UAV detection and tracking in real-time surveillance applications. | note de thèses : | Mémoire de master en informatique |
A lightweight multi-task deep learning framework for uav detection and tracking [document multimédia] / Amina Safaa Ben Messaoud, Auteur ; Nardjes Hamini, Directeur de thèse . - Laghouat : Université Amar Telidji - Département d'informatique : Laghouat : Université Amar Telidji - Département d'informatique, 2025 . - 49 p. + 1 disque optique numérique (CD-ROM). Option : Data science et artificial intelligence Langues : Anglais Mots-clés : | UAVs MTL YOLO Faster-RCNN-Resnet50 Tracking | Résumé : | In this work, we propose a custom Multi-Task Learning (MTL) model for real-time UAV detection and tracking, designed to jointly perform classification and bounding box regression.
The proposed model was evaluated against state-of-the-art detectors, including YOLOv8 and Faster R-CNN ResNet-50.
While YOLOv8 achieved fast inference with strong accuracy, and Faster R-CNN demonstrated high precision in complex scenes, our MTL model outperformed both in classification accuracy and bounding box precision. Specifically, the MTL model achieved a classification accuracy of 98.53%, a bounding box MAE of 0.0256, and an MSE of 0.0027, demonstrating its effectiveness in multi-output learning.
To enable tracking, we integrated a Kalman Filter, which maintained consistent ob- ject identities across frames .
These results highlight the robustness and efficiency of the proposed MTL-based pipeline for UAV detection and tracking in real-time surveillance applications. | note de thèses : | Mémoire de master en informatique |
|