Catalogue des ouvrages Université de Laghouat
A partir de cette page vous pouvez :
Détail d'une collection
Collection Pure and applied mathematics
Documents disponibles dans la collection
Ajouter le résultat dans votre panier Faire une suggestion Affiner la recherche

Titre : | Semi-Riemannian geometry | Type de document : | texte imprimé | Auteurs : | Barrett O'Neill, Auteur | Editeur : | USA : Academic Press | Année de publication : | 1983 | Collection : | Pure and applied mathematics num. 103 | Importance : | 468 p. | Présentation : | ill. | Format : | 24 cm. | ISBN/ISSN/EAN : | 978-0-12-526740-3 | Note générale : | Bibliogr. p. 456-457. Index | Langues : | Anglais | Catégories : | MATH:516 Géométrie
| Mots-clés : | Géométrie de Riemann Variétés (mathématiques) Calcul tensoriel Relativité (physique) | Résumé : | This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest. |
Semi-Riemannian geometry [texte imprimé] / Barrett O'Neill, Auteur . - USA : Academic Press, 1983 . - 468 p. : ill. ; 24 cm.. - ( Pure and applied mathematics; 103) . ISBN : 978-0-12-526740-3 Bibliogr. p. 456-457. Index Langues : Anglais Catégories : | MATH:516 Géométrie
| Mots-clés : | Géométrie de Riemann Variétés (mathématiques) Calcul tensoriel Relativité (physique) | Résumé : | This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest. |
|  |
Réservation
Réserver ce document
Exemplaires
Disponibilité |
---|
516.68-1 | 516.68-1 | Livre interne | BIBLIOTHEQUE CENTRALE | Mathématique (bc) | Disponible |
516.3-14-1 | 516.3-14-1 | Livre externe | BIBLIOTHEQUE DE FACULTE DES SCIENCES | Mathématique (SCI) | Disponible |