Catalogue des ouvrages Université de Laghouat
A partir de cette page vous pouvez :
Détail de l'auteur
Documents disponibles écrits par cet auteur
Ajouter le résultat dans votre panier Faire une suggestion Affiner la recherche

Titre : | Multigrid methods for finite elements | Type de document : | texte imprimé | Auteurs : | V.V Shaidurov, Auteur | Editeur : | USA : Kluwer Academic | Année de publication : | 1995 | Collection : | Mathematics and its applications | Importance : | xiv-331p. | Présentation : | ill. | Format : | 25cm. | ISBN/ISSN/EAN : | 978-0-7923-3290-9 | Langues : | Anglais | Catégories : | MATH:515 Analyse
| Mots-clés : | Finite element method Multigrid methods(Numerical analysis) Boundary value problems | Résumé : | Multigrid Methods for Finite Elements combines two rapidly developing fields: finite element methods, and multigrid algorithms. At the theoretical level, Shaidurov justifies the rate of convergence of various multigrid algorithms for self-adjoint and non-self-adjoint problems, positive definite and indefinite problems, and singular and spectral problems. At the practical level these statements are carried over to detailed, concrete problems, including economical constructions of triangulations and effective work with curvilinear boundaries, quasilinear equations and systems. Great attention is given to mixed formulations of finite element methods, which allow the simplification of the approximation of the biharmonic equation, the steady-state Stokes, and Navier--Stokes problems. |
Multigrid methods for finite elements [texte imprimé] / V.V Shaidurov, Auteur . - USA : Kluwer Academic, 1995 . - xiv-331p. : ill. ; 25cm.. - ( Mathematics and its applications) . ISBN : 978-0-7923-3290-9 Langues : Anglais Catégories : | MATH:515 Analyse
| Mots-clés : | Finite element method Multigrid methods(Numerical analysis) Boundary value problems | Résumé : | Multigrid Methods for Finite Elements combines two rapidly developing fields: finite element methods, and multigrid algorithms. At the theoretical level, Shaidurov justifies the rate of convergence of various multigrid algorithms for self-adjoint and non-self-adjoint problems, positive definite and indefinite problems, and singular and spectral problems. At the practical level these statements are carried over to detailed, concrete problems, including economical constructions of triangulations and effective work with curvilinear boundaries, quasilinear equations and systems. Great attention is given to mixed formulations of finite element methods, which allow the simplification of the approximation of the biharmonic equation, the steady-state Stokes, and Navier--Stokes problems. |
|  |
Réservation
Réserver ce document
Exemplaires
Disponibilité |
---|
515.234-1 | 515.234-1 | Livre interne | BIBLIOTHEQUE CENTRALE | Mathématique (bc) | Disponible |